Abstract

The method of progressive damage modelling has been used to assess fatigue damage accumulation and residual strength of carbon-fibre reinforced plastic (CFRP) laminates under fully reversed cyclic loading ( R= σ min/ σ max=−1). The accumulation of different damage modes has been assessed, as a function of number of cycles, using a three-dimensional fatigue progressive damage model (FPDM). The residual strength of the CFRP laminates has been assessed through the combined use of the FPDM with a static three-dimensional progressive damage model (PDM). By simulating the experimental procedure, the FPDM has been applied up to certain number of cycles, to estimate the accumulated fatigue damage and then, the static PDM has been applied (quasi-static tensile loading) to predict final tensile failure of the laminates, which corresponds to the residual strength of the laminate, after it has been exposed at the specific cycles. The models comprised the components of stress analysis performed using finite elements, failure analysis performed using polynomial stress-based failure criteria and material property degradation performed using degradation rules. The analysis has been validated experimentally (a) by assuming a laminate free of internal defects, and (b) by considering the initial defects, which were determined experimentally for certain laminates. The analysis has resulted in an accurate simulation of the experimentally determined fatigue damage accumulation and residual strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.