Abstract
Low-cycle fatigue behavior of Cu-1.53mass%Fe alloy single crystals with and without precipitated γ-Fe particles was examined. Although the γ-Fe particles are coherent and shearable, no cyclic softening was observed. Dislocation structures in solution-treated specimens were similar to those of fatigued pure Cu single crystals. However, in aged specimens, the precipitated γ-Fe particles retard the development of a dislocation structure. As a result, more uniform dislocation distribution compared with that in solution-treated specimens was observed, at least in the initial stages of cyclic deformation. Magnetic measurements revealed that the majority of the γ-Fe particles had transformed martensitically into x-Fe during the fatigue tests. The transformation changes the particle character from shearable to nonshearable. This change enhances the uniform deformation and the homogeneous dislocation distribution and leads to the absence of cyclic softening.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.