Abstract

Rubber shock absorbers are the key parts to isolate vibrations of the machinery and equipment. In this paper, a three dimensional finite element model of a rubber shock absorber is established; then the computation of three dimensional fatigue crack growth rates are discussed by using the nonlinear finite element method. The stress distribution which can determine the initial crack location and the possible risk surface under dynamic loads is obtained. The three dimensional crack growth is simulated by using finite element method and linear elastic fracture mechanics. A brittle fracture process of the rubber shock absorber along the dangerous surface is simulated by using the cohesive element of ABAQUS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call