Abstract

The extended McEvily model is adopted to predict the fatigue life of deepwater structures under cyclic compression. The three dimensional finite element analysis is performed to estimate the residual stress distribution along the crack surface during the crack propagation under cyclic compression. Then the stress intensity factors and crack growth rate are achieved based on extended McEvily model. The doubled edged specimen under cyclic compressive loading is taken for example to illustrate the analysis procedure, including fatigue crack growth rate prediction by Artificial Neural Networks (ANN), parameters estimation method of the extended McEvily model, calculation of the stress intensity factor and numerical simulation of fatigue crack propagation. By comparing the predicted results and the experimental results, it is found that the numerical simulation of fatigue crack growth under cyclic compression based on extended McEvily model is reasonable and feasible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call