Abstract
The series version of the M346 military trainer aircraft is currently under construction at Aermacchi (Venegono Superiore, Italy). The design target life of the aircraft, which will be certified for Damage Tolerance, is 12 000 flight hours (FH), with the possible extension to 16 000 FH after specific inspections. Fatigue tests were performed on critical elements at the Department of Aerospace Engineering at University of Pisa in order to verify crack propagation calculations. The wing to fuselage connection is one of the most interesting elements from the fatigue point of view. Spars and frames, both integrally machined, are connected by two lug-fork joints; the base material is aluminium alloy 7050-T7451 for both the elements. High interference bushings, ForceMate®, produced by FTI (Fatigue Technology Inc., Seattle, WA) were used in the lug/fork connections. Experimental activity was carried out on two different specimens. The first, a Compact Tension specimen, was tested under constant amplitude loading to verify the fatigue crack growth rate data contained in NASGRO 4, the software used for Damage Tolerance evaluations. Experimental results were fully comparable with the NASGRO 4 material database. Additional variable amplitude loading tests were carried out in order to calibrate crack growth prediction models used in the analyses. The second specimen was a lug-fork joint designed as the actual joints present on the aircraft. Both constant and variable amplitude loading fatigue tests were carried out in this case too. Results obtained clearly indicated the beneficial effect of ForceMate bushings, compared to shrink fit bushings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.