Abstract

Fatigue-crack propagation data have been obtained for a variety of aluminum alloys, tempers, and products in relatively thick sections of interest for large aircraft shapes. For the higher stress-intensity ranges, the alloys rate in about the same order with regard to resistance to fatigue crack propagation as with regard to plane-strain fractare toughness. However, for low stress intensity ranges (i.e. short cracks or low load ranges) the rate of fatigue-crack propagation was lowest for two alloys, 2020-T651 and 2014-T652. which have low plane-strain fracture toughness. The relative order for different specimen orientations was generally consistent with that based upon plane-strain fracture toughness. High humidity results in higher rates of fatigue-crack propagation, with the effect indicated to be largest for those alloys which are susceptible to stress corrosion cracking.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.