Abstract
Cortical bone allograft sterilized with a standard γ-radiation dose of 25-35kGy has demonstrated reduced static and cyclic fracture resistance compared with unirradiated bone. To mitigate radiation damage, we recently observed a dose-dependent response of high-cycle fatigue behavior of human cortical bone from 0 to 25 kGy, with lower doses exhibiting logarithmically longer fatigue lives. The objectives of this study were as follows: (1) to determine whether fracture toughness, work-to-fracture, and fatigue crack propagation resistance of human cortical bone are also radiation dose-dependent, and (2) to determine the associations of radiation dose and a Raman biomarker for collagen disorder with fracture properties. Compact tension specimens were machined from two donor femoral pairs and allocated to four treatment groups: 0 (unirradiated control), 10, 17.5, and 25 kGy. Fracture toughness specimens were monotonically loaded to failure and the critical stress intensity factor (KC ) was determined. Work-to-fracture was calculated from the load versus displacement integral up to fracture. Fatigue crack propagation specimens were cyclically loaded under constant room-temperature irrigation and fatigue crack growth rate (da/dN) and cyclic stress intensity (∆K) were calculated. Fracture toughness, work-to-fracture, and fatigue crack propagation resistance decreased 18%, 33%, and 15-fold from 0 to 25 kGy, respectively (p < 0.05). Radiation dose was more predictive of fracture properties than collagen disorder. These findings support that quasi-static and fatigue fracture properties of cortical bone are radiation dose-dependent within this dose range. The structural alterations arising from irradiation that cause these losses in fracture resistance remain to be elucidated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of orthopaedic research : official publication of the Orthopaedic Research Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.