Abstract

The fitness for serviceability of structural members of marine structures in which fatigue cracks might be found during in-service inspection is investigated in order to prevent instantaneous failures of ships, as well as a loss of serviceability such as the oil- and/or watertightness of critical compartments. The essential features of fatigue crack propagation and the remaining life assessment are discussed in the first part of the paper, where the effects of weldment, complicated stress distributions including stress biaxialities at three-dimensional structural joints, structural redundancy, and crack curving are found to be of primary importance. The second part of the paper contains a discussion of an advanced numerical simulation method for the remaining life assessment, in which the above-mentioned effects of fatigue crack propagation are taken into account. The simulated crack paths and the fatigue crack propagation lives are found to be in fairly good agreement with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.