Abstract

The present work is focused on the study of crack initiation during low cycle fatigue (LCF) loading of the second generation nickel-based superalloy MAR-M247 treated with hot isostatic pressing. LCF tests were conducted on cylindrical specimens in symmetrical push-pull cycle under strain control with constant total strain amplitude and strain rate at 800 °C in air atmosphere. Selected specimens were electrolytically polished to facilitate surface relief observations. Crack initiation sites were studied by means of scanning electron microscopy (SEM) in dual beam microscope TESCAN LYRA 3 XMU FESEM equipped with focus ion beam (FIB). The microstructure of the material is characterised by coarse dendritic grains with numerous carbides and small casting defects. The average grain size was 2.1 ± 0.3 mm. Fractographic analysis revealed the fatigue crack initiation sites and their relation to the casting defects and material microstructure. Casting defects, carbide inclusions and interdendritic areas were found to be important crack nucleation sites. Specimens’ surface observations revealed the formation of pronounced surface relief with short worm-like markings. Fatigue crack initiation in these places is documented and discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.