Abstract

An experimental testing procedure is proposed for generating creep-dominant creep-fatigue interaction in Alloy 617 at 950 °C. Most experimental studies on Alloy 617 at elevated temperatures employ a purely strain-controlled loading waveform with a tensile hold period. Strain-controlled loading can only generate interaction in the fatigue-dominant regime of the damage interaction diagram, due to the saturation effect of increasing hold time on cycle life. This saturation is caused by the rapid stress relaxation of Alloy 617 at high temperatures. Design codes for components undergoing creep-fatigue interaction at high temperatures require creep-fatigue testing data in the creep-dominant regime. This study investigates multiple creep-fatigue loading waveforms with the objective of producing creep-dominant interaction. The custom loading waveforms are implemented on a servo-hydraulic load frame with a furnace. A hybrid-control scheme with strain-controlled ramps and load-controlled hold periods is proposed due to its flexibility in generating varying proportions of creep and fatigue damage. Experimental data is presented and different loading schemes are compared. Special emphasis is on the creep and fatigue damage contributions by the newly proposed testing method. Several conclusions are discussed and an extension of this current work is suggested to improve the damage interaction diagram for design purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.