Abstract

The effect of single-cycle overloads on the subsequent fatigue crack growth behavior of Inconel 600 is studied. Overloads ranging from 10 to 50% are applied to a sample undergoing baseline fatigue crack growth at constant Δ K. In all cases, the crack growth rate increases slightly immediately after the overload and then decreases rapidly to a minimum value before later returning to the pre-overload value. The plastic zone size, affected crack length and the crack growth increment at minimum crack growth rate, a ́ , are measured for each overload. The affected crack length is considerably larger than the overload plastic zone size for overloads greater than 20%. Consequently, although the minimum crack growth rate occurs within the plane stress overload plastic zone, the effect of the overload extends well beyond the overload region. Within the overload plastic zone, contact occurs between the crack faces due to the excessive deformation produced during the overload cycle. The size of the contact region agrees very well with the overload plastic zone size. Beyond the overload region, Δ K eff remains less than the applied Δ K for some time due to the wedge action of the plastically deformed overload region, delaying recovery of the pre-overload crack growth rate. The crack growth rate recovers only after the crack grows out of the region of influence of the wedge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.