Abstract

Fatigue Crack Growth Rate (FCGR) of reeled pipe (strained & aged) in sour environments was investigated. FCGR frequency scans on different microstructures, i.e. heat affected zone (HAZ), and weld center line (WCL), revealed that, FCGR in corrosive environments increased with decreasing frequency and reached a plateau value at low frequencies of 10mHz to 3mHz. At these ‘plateau frequencies’, FCGR in the moderately sour environment that was investigated were found to be about 10–18× or 30× higher than the in-air values for the WCL and HAZ, respectively. There was no effect of the reeling cycles on the FCGR of the WCL or HAZ specimens. The FCGRs of the WCL were consistently lower than that of the HAZ by about a factor of 2–3× under various conditions. The reason for the lower FCGR of the WCL is not well understood. It is possible that it may be due to the higher yield strength (YS) of the overmatched welds, differing hydrogen concentration and/or diffusion coefficient or possibly due to the differences in the microstructure between the HAZ and WCL. Paris law curves, FCGRs as a function of ΔK (stress intensity factor range), were measured on the HAZ, and WCL (both intrados) at the plateau frequency (10mHz), representative of flowline cyclic loading. They were also measured at a higher frequency of 0.33Hz, representative of Steel Catenary Risers (SCR) cyclic loading associated with wave motion. Comparisons of measured Paris law curves in corrosive environments to those in air were consistent with the results of the frequency scans. There was no effect of number of cycles of reeling on the Paris law curves in the sour environment tested for WCL and HAZ specimens at both the plateau frequency and 0.33Hz. The results of the test program suggest FCGR of WCL and HAZ in the sour environment tested are not affected by number of cycles (up to 5) of straining on the intrados side for the strain level (1.93% per cycle) used in this study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.