Abstract

Japanese reference fatigue crack growth rate (FCGR) curves for ferrite and austenitic stainless steels in light water reactor environments are prescribed in JSME S NA1-2004. However, similar reference FCGR curve for nickel-based alloys for pressurized water reactors (PWR) are not prescribed. In order to propose reference FCGR curve for nickel-based alloys, under high stress ratio and low rising time, the effect of the welding method, the effect of specimen orientation and low stress intensity range fatigue crack propagation tests of nickel-based alloys 600, 132 and 82 weld metals were conducted as part of the Environmental Fatigue Test (EFT) projects of Japan Nuclear Energy Safety Organization (JNES). The results show that the effect of heat, welding methods, specimen orientations and environmental water conditions on the FCGR was not significant for Alloys 600, 132 and 82. The FCGR increased with increase of stress ratio, and cyclic loading frequency. According to the procedure for determining the reference FCGR curve of austenitic stainless steels in PWR environment of nickel-based alloys is proposed based on the reference data and the results of this study. The reference FCGR curve for nickel-based alloys in PWR environment are determined as a function of stress intensity factor range, temperature, load rising time and stress ratio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call