Abstract

Abstract The phenomenon of flat-to-slant crack growth has been studied by many in the fracture mechanics community. At low stress-intensity factors, a fatigue-crack surface is flat (tensile mode) and the crack-front region is under plane-strain conditions (high constraint). As the crack grows with higher stress-intensity factors, a 45° shear lip occurs through the thickness of the sheet or plate. This behavior is the shear mode, which is under low constraint or plane-stress conditions. In 1966, Schijve found that the transition from flat-to-slant crack growth on a 2024-T3 Alclad aluminum alloy over a wide range in stress ratios (R) occurred at a “constant” crack-growth rate. Also, Newman and Hudson showed the same behavior on 7075-Temper-6 and Ti–8Al–1Mo–1V alloys, validating Schijve’s observation that crack-growth rate was the key parameter for flat-to-slant crack-growth behavior. The materials considered herein are 2024-T3, 7075-T6, and 9310 steel. Crack-growth behavior during single-spike overloads and simulated aircraft spectrum loading are presented. The fatigue structural analysis (FASTRAN) crack-closure based life-prediction code was used to correlate the constant-amplitude (CA) crack-growth-rate data over a wide range in stress ratios (R = Smin/Smax) and rates from threshold to near fracture, and to calculate or predict the crack-growth behavior on single-spike overload tests. Crack-closure behavior is strongly dependent upon the level of constraint. The main objective was to see if the constraint-loss region is the primary reason for crack-growth delays after single-spike overloads. Also, crack-growth analyses are presented on tests that were conducted by Wanhill on 2024-T3 Alclad aluminum alloy under the transport wing standard (TWIST) spectrum. Crack-growth analyses using crack-closure theory without constraint loss was “unable” to predict crack growth under spike overloads or simulated aircraft spectra. However, predicted crack length against cycles with constraint-loss behavior compared reasonably well with all tests.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.