Abstract

The fatigue crack growth behavior in Regions II and III of crack growth was investigated for hypoeutectic and eutectic Al-Si-Mg cast alloys. To isolate and establish the mechanistic contributions of characteristic microstructural features (dendritic α-Al matrix, eutectic phases, Mg-Si strengthening precipitates), alloys with various Si content/morphology, grain size level, and matrix strength were studied; the effect of secondary dendrite arm spacing (SDAS) was also assessed. In Regions II and III of crack growth, the observed changes in the fracture surface appearance were associated with changes in crack growth mechanisms at the microstructural scale (from a linear advance predominantly through primary α-Al to a tortuous advance exclusively through Al-Si eutectic Regions). The extent of the plastic zone ahead of the crack tip was successfully used to explain the changes in growth mechanisms. The fatigue crack growth tests were conducted on compact tension specimens under constant stress ratio,R=0.1, in ambient conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.