Abstract

Short fatigue cracks in polycrystalline materials are very important from both practical and basic aspects, yet they are very difficult to observe. Therefore, it is suggested to emulate some properties of short cracks with long fatigue cracks in monocrystals. Indeed, such experiments in pure nickel crystals prove that the three peculiar properties of short fatigue cracks in polycrystalline metals are observed in long cracks in monocrystals, i.e., a lower threshold of the stress intensity factor (ΔKI)th, a higher crack propagation rate at low ΔKI regimes, and the fact that different cracks exhibit different growth behaviors. The fatigue experiments in monocrystals reveal interesting details of the slip activity at the front of fatigue cracks, including a selection rule for the active slip systems above and below the crack, the slip behavior under conditions of steep strain gradients, and the activation of a new slip system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.