Abstract

Existing theories for the growth of cracks at weld toes have proved difficult to verify because of a lack of experimental proof at short crack depths and slow growth rates. Arbitrary initial defect sizes have been employed in life calculations coupled with approximate two-dimensional stress analyses. In this study, the fatigue performance of a stress relieved fillet weld is determined by both theory and experiment. Crack growth results for shallow (less than 1 mm depth) elliptical cracks at weld toes are used to test an elastic expression for stress intensity using a correction factor from a three-dimensional stress analysis. No evidence of higher than expected growth rates, observed by others for very short cracks and cracks in notch plastic zones, is apparent. Integration of a growth law that includes the threshold stress intensity factor provides fatigue life predictions for various stress ratios and from experimentally measured defect depths. Needle peening the weld toe improves the fatigue life by retarding crack growth up to 1 mm below the weld toe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.