Abstract

Critical aerospace parts require damage tolerance analysis to determine the inspection intervals in-service. Such analyses, based on linear fracture mechanics, require that the fatigue crack growth (FCG) rate relation to the stress intensity factor range is applicable independent of geometry and stress. FCG rates for laser powder bed fusion Ti6Al4V material for conventional compact tension (CT) specimens have therefore been compared to FCG rates for specimens with a crack configuration more technically relevant from an industrial and engineering perspective. The FCG rates corresponded very well and data obtained with CT-specimens can therefore be considered relevant for general damage tolerance predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call