Abstract

Combining welding technology with robotics, wire arc additive manufacturing (WAAM) is emerging as a viable method of construction. To facilitate its wider application, in particular with structural integrity in mind, an improved understanding of the fatigue properties of WAAM materials is needed. Hence, an experimental investigation into the fatigue crack growth (FCG) behaviour of WAAM plates made of normal- and high-strength steels has been conducted and is reported herein. Following material characterisation, FCG tests on 13 machined compact tension specimens were undertaken, extracted in different directions from WAAM plates built using a parallel deposition strategy. Fractography of the tested specimens was also performed to analyse the mechanisms of crack growth. The material testing demonstrated an approximately proportional relationship between the hardness and ultimate strength. From the FCG tests, Paris’ law constants were derived for the WAAM normal- and high-strength steel specimens, revealing consistently lower material constants m for the latter. Similar FCG behaviour to that of equivalent, conventionally-produced steels, with no significant anisotropy, was found. The observed response was shown to be generally well captured by the FCG laws given in BS 7910, with the recommended curve for unwelded steels providing a close match to the experimental data and the recommended curve for welded steels providing conservative predictions. Additional FCG data on WAAM steels printed using the parallel and oscillatory deposition strategies were collected and analysed. It was shown that the two deposition strategies led to similar crack growth rates for WAAM normal-strength steels, but distinct FCG behavioural trends for WAAM high-strength steels. Finally, the fractographic analysis showed that the WAAM specimens exhibited principally brittle behaviour during FCG but somewhat ductile behaviour before fracture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.