Abstract

The present study focuses on the fatigue properties in the weld heat-affected zone (HAZ) of 800MPa grade high-performance steel, which is commonly used in bridges and buildings. Single- and multi-pass HAZs were simulated by the Gleeble system. Fatigue properties were estimated using a crack propagation test under a 0.3 stress ratio and 0.1 load frequencies. The microstructures and fracture surfaces were analyzed by optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results of the crack propagation test showed that the fatigue crack growth rate of coarse-grained HAZ (CGHAZ) was faster than fine-grained HAZ (FGHAZ), although both regions have identical fully martensite microstructures, because FGHAZ has smaller prior austenite grain and martensite packet sizes, which can act as effective barriers to crack propagation. The fatigue crack growth rate of intercritically reheated CGHAZ (ICCGHAZ) was the fastest among local zones in the HAZ, due to rapid crack initiation and propagation via the massive martensite–austenite (M–A) constituent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call