Abstract
Fatigue crack growth tests were carried out using centre-cracked tensile (CCT) specimens of ultrafine grained (UFG) copper, aiming at clarifying microstructure evolution around the fatigue crack tip and at better understanding of fatigue crack propagation mechanisms. The fatigue crack growth tests revealed that UFG copper had the lowest threshold stress intensity factor range ΔKth. On the other hand, the crack growth rates were almost identical among the UFG and conventional specimens tested at higher ΔKI regime. From the microstructure observation after the fatigue crack growth test, significant grain growth was detected in the intimate vicinity to the fracture surface in UFG copper. The size of the grown grains in the UFG copper increased with increasing stress intensity factor range and with the size of the cyclic plastic zone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.