Abstract

AbstractThe aim of this paper is to investigate the fatigue fracture behavior of three different adhesive systems (epoxy‐based, acrylic, and a rubber‐like adhesive). To achieve this, double cantilever beam specimens were manufactured with different adhesives and tested under several mode mixities and different load levels. Fatigue crack growth rate was evaluated through a Paris law equation. For postprocessing, the compliance‐based beam method was used. Results showed that the variation of the threshold energy with load level is more pronounced for the epoxy‐based adhesive. The crack propagation life is higher for the acrylic adhesive. Although, for pure mode I conditions, the normalized threshold of the rubber‐like adhesive is lower, for pure mode II, it was higher than the epoxy‐based adhesive. Due to the normalization by the static fracture energy, the slope of the Paris law was approximately constant for all the adhesive systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.