Abstract

In this study, the peridynamic fatigue model for a homogeneous material is extended to the layered heterogeneous material. Thermal residual stress and the corresponding stress intensity factor are calculated, within the framework of the peridynamic theory, by considering the cooling process using a pairwise force function caused by the thermal loading effect. To avoid overlapping of the cracked surfaces due to compressive thermal residual stress, the notion of short range force (Macek and Silling, 2007) is newly introduced. In addition, an auxiliary reference configuration is used to define the cyclic bond strain in the constricted material. The proposed approach is validated by performing an illustrative case study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.