Abstract
Structural health monitoring of riveted aircraft panels is a real challenge for maintenance engineers. Here, a diffused Lamb wave field is used for fatigue-crack detection in a multi-riveted strap-joint aircraft panel. The panel is instrumented with a network of low-profile surface-bonded piezoceramic transducers. Various amplitude characteristics of Lamb waves are used to extract information on fatigue damage. A statistical outlier analysis based on these characteristics is also performed to detect damage. The experimental work is supported by simplified modelling of wave scattering from crack tips to explain complex response features. The Local Interaction Simulation Approach (LISA) is used for this modelling task. The results demonstrate the potential and limitations of the method for reliable fatigue-crack detection in complex aircraft components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.