Abstract

Selective laser melting (SLM) is a laser based rapid manufacturing technology that builds metal parts layer-by-layer using metal powders and a computer controlled laser. Various important aspects strongly affect the mechanical properties of sintered metal components, such as: porosity, surface roughness, scan speed, layer thickness, and residual stresses. Therefore, properties of SLM manufactured parts must be carefully analysed, particularly under fatigue conditions.The purpose of this work was to study the effect of scan speed, porosity and microstructure on the mechanical properties and fatigue strength of sintered laser samples. Sintered laser parts were manufactured in maraging steel AISI 18Ni300. Fatigue behaviour is related to process parameters, such as: surface residual stresses, microstructure and porosity.The results showed that a very high scan speed (400 or 600mm/s) causes the appearance of high percentages of porosity and a consequent drastic reduction of tensile strength and stiffness. Fatigue behaviour was assessed in terms of the traditional S-N curves and of the da/dN–ΔK crack propagation curves. Fatigue life predictions based on Hartman and Schijve’s equation underestimated significantly fatigue lives, particularly for low stress levels. The results of the tests performed at variable amplitude loading were well fitted by Miner’s law.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call