Abstract

Existing design recommendations for the consideration of high frequency hammer peening (HFHP) are limited to steel grades of S960 and plate thicknesses of 5mm and higher. The influence of HFHP treatment on the fatigue behaviour of welded ultra high strength steels with yield strengths of 960MPa and higher – loaded in the upper finite and low cycle fatigue life region – has not been investigated sufficiently so far. For this reason, fatigue tests have been performed on four typical welded notch details of mobile crane structures made of S960, S1100 and S1300 to determine the influence of HFHP on the fatigue strength. The fatigue strength of HFHP treated specimens was at least twice the fatigue strength of the as welded toe condition. A fatigue life improvement due to HFHP treatment can be observed at load cycles of 10,000 and higher. In accordance with existing investigations, the slope of the S–N-line increases to approximately m∼5 due to HFHP treatment if the fatigue cracks start from the treated weld toes. The classification of the test results for the HFHP treated toe condition shows, that fatigue classes (FAT) of existing design proposals are conservative. Further improvements of the proposed FAT classes are possible which shows the potential use of UHSS with steel grades higher than S960 in combination with HFHP treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.