Abstract

This paper presents a study of fatigue performance of composite T-joints used in wind-turbine blades. A T-joint with various fibre reinforcement architectures were selected to investigate its fatigue behaviour. The 3D angle interlock T-joint was found to have the best performance in both static and fatigue loading. Increasing the static properties increases fatigue performance while the increasing rate in life performance is changed with the number of fatigue cycles. A finite element (FE) model was developed that can determine the stress distribution and the initiation and propagation of a delamination crack. The location for through-thickness reinforcement is very important to improve fatigue performance of composite T-joints. Fatigue performance is significantly improved for the web with through-thickness reinforcement while fatigue performance is decreased if the through-thickness reinforcement is applied to the flange-skin regions. The interlaminar veil significantly increases the ultimate strength under static load but fatigue performance at high stress cycles is increased but not significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.