Abstract

The aim of this study is to examine the corrosion fatigue behavior of filament wound composite pipes with a surface crack under alternating internal pressure. The filament wound pipes are composed of multi-layered E-glass/epoxy composites with a [±75°]3 lay-up. The surface notches were formed on the outer surface of the pipe along the pipe axis. Dilute (0.6 M) HCl acid was applied to the surface crack region by a corrosion cell mounted on the outer surface of the pipe. The results of an experimental investigation into the corrosion fatigue tests are conducted to observe the oil leakage failure and the crack propagation of the composite pipe subjected internal pressure loading with an open ended condition in which the pipe can be deformed freely in the axial direction. The internal pressure was generated by conventional hydraulic oil for fatigue loading. The fatigue tests are performed at 0.42 Hz frequency and a stress ratio of R = 0.05 in accordance with ASTM D-2992 standard. The oil leakage from the crack tip was observed after the crack propagation reached to the critical stress intensity level. The fatigue crack propagation behavior with the environment exposure was strongly dependent on the crack parameters such as crack-depth ratio and crack-aspect ratio. The micro structure of the fracture surface with the effect of environment and the fatigue loading were also observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.