Abstract
It is well-known that the response to mechanical loading of nano-sized metal structures differs from what applies to the macroscopic scale, and often non-intuitive behaviors are revealed. Here beams of square cross section, containing defects in terms of voids and loaded in fatigue with R = 0 under displacement controlled conditions, are investigated. The structures under consideration are single-crystal copper beams, chosen since such elements are common parts of a large variety of products found on the market today. The aim is to determine the resistance against fatigue failure through 3D molecular dynamic simulations. The simulations have been performed employing the 3D molecular dynamics free-ware LAMMPS.The outcome of the investigations will highlight the influence of defects on the fatigue resistance at the nano-scale. The knowledge gained will give input into how to design structures on the nano-scale considering the presence of defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.