Abstract

Although the use of glass fiber-reinforced polymer (GFRP) reinforcing bars is gaining acceptance as an alternative to conventional steel reinforcement in concrete structures, little empirical data exist on the long-term fatigue performance of GFRP bars in concrete. Abrasion at the bar-concrete interface is known to have an adverse effect on bonds and on the overall member response under cyclic loading, although this effect was not adequately quantified until now. This paper presents the results of an experimental study comparing the fatigue performance of GFRP bars in air with the behavior of similar bars embedded in concrete. The experimental findings showed that the GFRP bars tested in air survived fatigue lives that were approximately a full order of magnitude longer than similar bars in concrete beams. The results were used to calibrate a statistical fatigue life model and a residual stiffness model for GFRP bars in reinforced concrete flexural members.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.