Abstract

Effects of steam environment on fatigue behavior of a non-oxide ceramic composite with a multilayered matrix were investigated at 1200 °C. The composite was produced via chemical vapor infiltration (CVI). The composite had an oxidation inhibited matrix, which consisted of alternating layers of silicon carbide and boron carbide and was reinforced with laminated woven Hi-Nicalon™ fibers. Fiber preforms had pyrolytic carbon fiber coating with boron carbon overlay applied. Tensile stress–strain behavior and tensile properties were evaluated at 1200 °C. Tension-tension fatigue tests were conducted at 0.1 Hz and at 1.0 Hz for fatigue stresses ranging from 100 to 140 MPa in air and in steam. Fatigue run-out was defined as 105 cycles at 0.1 Hz and as 2 × 105 cycles at 1.0 Hz. Presence of steam had little influence on fatigue performance at 1.0 Hz, but noticeably degraded the fatigue lifetimes at 0.1 Hz. Specimens that achieved run-out were subjected to tensile tests to failure to characterize the retained tensile properties. Prior fatigue in air and in steam caused significant reduction in tensile strength and modulus. Composite microstructure, as well as damage and failure mechanisms were investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call