Abstract

Nanostructured and conventional titania (TiO 2) coatings were thermally sprayed using air plasma spray (APS) and high velocity oxy-fuel (HVOF) processes. The fatigue and mechanical properties of these coatings were investigated. A previous study characterized these coatings by scanning electron microscopy (SEM) to investigate the microstructural features and Vickers indentation to determine the hardness and crack propagation resistance. This current complementary SEM work examined fracture surfaces of fatigue-tested samples to assess crack nucleation and to study mechanisms of deformations. The fatigue strength of coatings deposited onto low-carbon steel (AISI 1018) showed that the nanostructured titania coated specimens exhibited significantly higher fatigue strength compared to the conventionally sprayed titania. The strain–time curve of AISI 1018 coated with TiO 2 indicated that the strain amplitude of the HVOF-sprayed nanostructured TiO 2 coating was much lower than the corresponding data of APS conventional TiO 2. SEM analysis of fracture surfaces revealed valuable information regarding the influence of these coatings on the performance of the coated component. This investigation gives new understanding to the nature of fatigue and deformation of the nanostructured and conventional titania (TiO 2) coatings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.