Abstract

Aluminum matrix composites (AMCs) are characterized by improved mechanical properties in comparison to their unreinforced matrix alloys. But the knowledge about the fatigue behavior of AMCs in the HCF-and in the VHCF-regime is limited until now. Due to this AMC225xe and AMC xfine225 with an average SiC particle content of 25 vol.-% and particle sizes of 2.5 μm and 0.7 μm, respectively, as well as the base alloy AA2124 were fatigued up to 1010 cycles using the ultrasonic testing facility of the type "UltraFast-WKK-Kaiserslautern".To describe the fatigue behavior of the specimens several measuring devices were used to monitor and record the central process parameters. A very sensitive value to detect specimen failure at an early stage is the dissipated energy which can be determined as the integral of the generator power depending on the ultrasonic pulse time.In comparison to AA2124 the investigated AMCs have shown a considerably enhanced fatigue performance for stress amplitudes higher than 140 MPa. But below this stress amplitude for the matrix alloy run outs at 1010 cycles were realized whereas the AMCs failed at lower number of cycles still at lower stress amplitudes. Moreover, while crack initiation of the matrix alloy in all cases started at the surface for the AMCs the crack initiation point changes from surface to subsurface for more than 107 cycles. The subsurface failures of the composites were caused by microstructural inhomogeneities which could be identified with EDX and micro-CT as particle clusters and copper-iron-rich inclusions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call