Abstract

Truck drivers have been involved in a significant number of road fatalities in Colombia. To identify variables that could be associated with crashes in which truck drivers are involved, a logistic regression model was constructed. The model had as the response variable a dichotomous variable that included the presence or absence of a crash during a specific trip. As independent variables the model included information regarding a driver's work shift, with variables that could be associated with driver's fatigue. The model also included potential confounders related with road conditions. With the model, it was possible to determine the odds ratio of a crash in relation to several variables, adjusting for confounding. To collect the information about the trips included in the model, a survey among truck drivers was conducted. The results suggest strong associations between crashes (i.e., some of them statistically significant) with the number of stops made during the trip, and the average time of each stop. Survey analysis allowed us to identify the practices that contribute to generating fatigue and unhealthy conditions on the road among professional drivers. A review of national regulations confirmed the lack of legislation on this topic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call