Abstract
AbstractA micromechanical model considering the spherulite structure of semi‐crystalline polymers was established in this study. The micro stress–strain histories were captured by combining the constitutive equations and multi‐axial fatigue criterion. The continuous damage theory was employed to describe the degradation of material properties during cycle loading. Based on the proposed model, the effects of microstructure features, such as grain anisotropy, defects, and crystallinity, on the fatigue performance was examined under multi‐axial loading condition. The local material degradation and damage accumulation were then focused on to understand the underlying fatigue mechanisms with various microstructures. Meanwhile, the crack initiation site was precisely predicted and discussed. This research provides theoretical support for understanding the failure mechanisms of spherulitic semi‐crystalline polymers, deepening the understanding of associated microstructural characteristics and strengthening the anti‐fatigue design of semi‐crystalline polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Fatigue & Fracture of Engineering Materials & Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.