Abstract

The transformation of powertrains, powered by internal combustion engines, into electrical systems generates new challenges in developing lightweight materials because electric vehicles are typically heavy. It is therefore important to develop new vehicles and seek more aesthetic and environmentally friendly designs whilst integrating manufacturing processes that contribute to reducing the carbon footprint. At the same time, this research explores the development of new prototypes and custom components using printed composite materials. In this framework, it is essential to formulate new approaches to estimate fatigue life, specifically for components tailored and fabricated with these kinds of advanced materials. This study introduces a novel fatigue life prediction approach based on an artificial neural network. When presented with given inputs, this neural network is trained to predict the accumulation of fatigue damage and the temperature generated during cyclic loading, along with the mechanical properties of the compound. Its validation involves comparing the network’s response with the load ratio result, which can be calculated using the fatigue damage parameter. Comparing both results, the network can successfully predict the fatigue damage accumulation; this implies an ability to directly employ data on the mechanical behavior of the component, eliminating the necessity for experimental testing. Then, the current study introduces a neural network designed to predict the accumulated fatigue damage in printed composite materials with an Onyx matrix and Kevlar reinforcement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call