Abstract

This paper describes the feasibility analyses of an innovative, extensible ‘smart’ blade technology aims to significantly improve the wind turbine energy production. This innovative ‘smart’ blade will be extended at low wind speed to harvest more wind energy. It will be retracted to its original shape above rated wind speed, to protect the blade from possible damages under high wind speed. The extended blade, however, will inevitably increase the fatigue damage of the wind turbine blade of which fatigue demand, which often controls the design requirement of wind turbine blade. A rain-flow counting method is used for calculating stress range cycles during turbine blade operation. The analyzes model in the research is built based on a 100 kW utility-scale wind turbine installed on the campus of Case Western Reserve University with a data acquisition system installed on the wind turbine tower to monitor the operation data continuously over the years. In this analyses, the data set consists of four years’ wind speed data at 10-minutes time interval and blade rotational speed from March 2014 to February 2015 have been used. The results show that the fatigue damage of this extensible blade increased is acceptable considering its increased power output.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.