Abstract

This study aimed to explore the effect of fatigue on the biomechanical contribution of the lower extremity joints during a typical stretch-shortening cycle (SSC) task. 15 male athletes completed drop jump (DJ) under pre- and post-fatigue. Vicon motion capture system and 3D Kistler force plates were used to collect kinematics and ground reaction force data simultaneously. Under fatigue condition, 1) the DJ height decreased; the touchdown angle of knee and ankle reduced and the range of motion increased; 2) the maximum push-off moment and power of knee was reduced; 3) the stiffness of knee, ankle, and legs was reduced; 4) the energy generation and the net energy of the ankle decreased; 5) the energy contribution of knee decreased during the eccentric phase. Fatigue altered biomechanical contribution of the lower extremity joints by changing the movement pattern during DJ. The control ability of the knee and ankle were decreased. Eventually, the jump performance was reduced. In addition, the decrease of stiffness as well as the energy contribution of these joints can be used as sensitive indices to evaluate the performance of DJ after fatigue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.