Abstract

Persistent and mobile organic micropollutants (OMP) are ubiquitously found in the aquatic environment and have a high propensity to distribute in water resources and are difficult to remediate. Managed aquifer recharge systems such as artificial groundwater recharge, produce high-quality drinking water by removing numerous OMP from the source water. In this study, the fates of selected emerging and potentially persistent and mobile OMP were investigated in outdoor columns for artificial groundwater recharge simulation. Breakthrough curves of OMP were modeled to differentiate between sorption and bio-transformation. The study showed that selected OMP were persistent in the surface water and no photo-degradation was observed, except for diclofenac. The trends of dissolved organic carbon concentrations and UV light absorption at 254 nm wavelength suggest elevated biological activity in the first 0.3 m of the columns. The study revealed that the bio-transformation of cyanoguanidine, valsartan acid and diclofenac correlated with the biological activity in the sand columns. Benzyltrimethylammonium, n-(3-(dimethylamino)-propyl)methacrylamide, 1,3-di-o-tolylguanidine, 1,3-diphenylguanidine and melamine were completely eliminated within the first 0.3 m, likely due to sorption. Less mobile compounds such as carbamazepine and adamantan-1-amine also showed sorption. Sorption was also observed for diclofenac, likely due to decreased pH along the column depth. Retardation factors of several OMP were higher in the first 0.3 m of the columns, likely due to higher organic carbon contents compared to the remaining depth. Six organic substances (for example 2-acrylamido-2-methylpropane sulfonate and dimethylbenzene sulfonate) were persistent and mobile throughout the experiment. Overall, this study reveals the vital role of pH and sand organic carbon for sorption and residence time and biological activity for OMP elimination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.