Abstract
Human polo-like kinase 1 (Plk1), a key regulator of mitosis, is over-expressed in various human tumors. It is a negative prognostic factor for cancer patients and a measure for the aggressiveness of a tumor. Thus, targeting Plk1 might be a promising approach for cancer therapy. Plk1 inhibitors represent attractive tools for cancer research and for the mechanistic investigation of checkpoint control. Here, we show the impact of Plk1 inhibition on cell cycle regulation in primary cells. After treatment with SBE13 the G1/S checkpoint was intact, indicated by reduced pRb, resulting in slower cell cycle progression but overall cell proliferation was not significantly impaired. Thus, we provide strong evidence that SBE13 leaves checkpoint control in primary cells unaffected making it a remarkable future anti-cancer therapeutic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.