Abstract

A double membrane system combining a membrane bioreactor (MBR) with a nanofiltration (NF) membrane at the pilot scale was tested to treat real antibiotic wastewater at a pharmaceutical company in Wuxi (China). The water yield of the pilot system reached over 92 ± 5.6% through recycling the NF concentrate to the MBR tank. Results showed that the pilot scale system operated in good conditions throughout the entire experiment period and obtained excellent water quality in which the concentrations of chemical oxygen demand and total organic carbon were stable at 35 and 5.7 mg/L, respectively. The antibiotic removal rates of both spiramycin (SPM) and new spiramycin in wastewater were over 95%. Organics analysis results showed that the main organics in the biological effluent were proteins, soluble microbial by-product-like, fulvic acid-like and humic-like substances. These organics could be perfectly rejected by the NF membrane. Most of the organics could be removed through recycling NF concentrate to the MBR tank and only a small part was discharged with NF concentrate and permeate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.