Abstract
The decomposition and fate of 15N-labeled beech litter was monitored in three European beech (Fagus sylvatica L.) forests (Aubure, France; Ebrach, Germany; and Collelongo, Italy) for 3 years. Circular plots around single beech trees were isolated from roots of neighboring trees by soil trenching, and annual litterfall was replaced by 15N-labeled litter. Nitrogen was continuously released from the decomposing litter. However, over a 2-year period, this release was balanced by the incorporation of exogenous N. Released N accumulated mainly at the soil surface and in the topsoil. Microbial biomass remained almost constant during the experiment at all sites except for considerably lower values at Ebrach. The 15N enrichment of the microbial biomass increased strongly during the first year and then remained stable. The 15N released from the decomposing litter was rapidly detected in roots and leaves of the beech trees, increasing regularly and linearly over the course of the experiment. The uptake of litter-released 15N by the trees was reduced under conditions that reduced tree growth. Under these conditions, leaves and fine roots were the dominant N sinks, and little N was allocated to other plant parts. By contrast, N uptake and N allocation from leaves to stem and bark tissues increased when tree growth was enhanced. Budgets for 15N showed that 2 to 4% of litter-released N was incorporated into the trees, about 35% remained in the litter and about 50% reached the topsoil.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.