Abstract

Adrenal medullary tissue from adult rats was dissociated into cell suspensions and injected into the anterior chamber of the eye, where the cells were made to attach to the previously sympathectomized irides with the use of fibronectin. Short- and long-term survival of the chromaffin cells was examined in whole mounts of irides using Falck-Hillarp fluorescence histochemistry or indirect immunohistochemistry with antibodies against adrenaline and dopamine-beta-hydroxylase (DBH). After 6 days in oculo all cells were immunoreactive for adrenaline; almost none displayed processes even if beta-nerve growth factor (NGF) was given at grafting. One month after weekly intraocular injections of NGF, many cells were surrounded by nerve fiber networks and all cells were DBH-immunoreactive. Eight months postgrafting and 7 months after the last injection of NGF almost the entire iris was reinnervated and resembled a normal, sympathetically innervated iris. Both at 1 and 8 months, chromaffin cells, ganglion cells and transitional cell forms (chromaffin cells transforming towards ganglion-like cells) were found in irides from the NGF-treated eyes. The number of ganglion cells was remarkably increased with time by NGF, while the number of chromaffin cells decreased compared to controls. A single treatment with NGF at grafting had no marked effects as examined up to 3 months; at this time there was a certain outgrowth of nerve terminals, which, however, was not as pronounced as 1 month after repeated NGF injections. In conclusion, it is shown that some cells in a chromaffin cell suspension attach to the iris, transform to ganglion cells after an induction with exogenous NGF, and reinnervate the sympathetically denervated iris. Such cells remain ganglion-like in character and continue to form processes even after cessation of exogenous NGF treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.