Abstract

In-situ burning (ISB) is a remediation strategy that is used for managing oil spills. ISB generates heavy residues that can submerge and negatively impact benthic environments. To track the fate of toxic contaminants in ISB residues, a conservative hopane biomarker, such as C30-αβ hopane, is often used. Furthermore, diagnostic ratios of various hopanes are used for source oil identification. Use of these biomarkers assume that during ISB the quantity of C30-αβ hopane will be conserved, and the diagnostic ratios of various hopanes will be stable. The objective of this study is to test the validity of these two assumptions. We conducted laboratory-scale ISB experiments using a model oil prepared from commercial C30-αβ hopane standard, and a reference crude oil. Laboratory data collected under controlled burning conditions show that C30-αβ hopane will not be conserved; however, the diagnostic ratios of hopanes will still remain fairly stable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.