Abstract

In the near future, phosphorus (P) recycling will gain importance in terms of decreasing primary resources. Sewage sludge (SSL) is an adequate secondary P-resource for P-fertilizer production but it is also a sink for heavy metals and organic pollutants. The present study is an investigation on thermochemical P-recycling of SSL. Various temperatures and amendments were tested regarding their performance to remove heavy metals and polycyclic aromatic hydrocarbons (PAH) and simultaneous increase of the plant-availability of P. The investigations were carried out on two types of SSL originating from wastewater treatment plants with chemical P-precipitation and enhanced biological P-removal, respectively. The results show that thermochemical treatment with chlorine donors is suitable to remove the majority of heavy metals and that a combination of a gaseous chlorine donor (HCl) and sodium additives leads to both high heavy metal removal and high plant availability of P. Furthermore, plant experiments show that almost all investigated thermochemical treatments can significantly reduce the bioavailability and plant uptake of heavy metals. Furthermore, PAHs are secondarily formed during low-temperature treatments (400–500 °C), but can be significantly reduced by using sodium carbonate as an additive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call