Abstract
The inhibition of DNA replication fork progression by DNA lesions can lead to cell death or genome instability. However, little is known about how such DNA lesions affect the concurrent synthesis of leading- and lagging-strand DNA catalysed by the protein machinery used in chromosomal replication. Using a system of semi-bidirectional DNA replication of an oriC plasmid that employs purified replicative enzymes and a replication-terminating protein of Escherichia coli, we examined the dynamics of the replication fork when it encounters a single abasic DNA lesion on the template DNA. A DNA lesion located on the lagging strand completely blocked the synthesis of the Okazaki fragment extending toward the lesion site, but did not affect the progression of the replication fork or leading-strand DNA synthesis. In contrast, a DNA lesion on the leading strand stalled the replication fork in conjunction with strongly inhibiting leading-strand synthesis. However, about two-thirds of the replication forks encountering this lesion maintained lagging-strand synthesis for about 1 kb beyond the lesion site, and the velocity with which the replication fork progressed seemed to be significantly reduced. The blocking DNA lesion affects DNA replication differently depending on which strand, leading or lagging, contains the lesion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.