Abstract

Anaerobic ammonium oxidation (Anammox) is a cost-effective process for treating highly nitrogenous wastewater. However, the fate of organic nitrogen during Anammox treatment is still unclear, which limits its practical application. In this work, the changes in the quality of dissolved organic nitrogen (DON) in coal liquefaction wastewater (CLW) during Anammox were studied in relation to its chemical composition, which was determined by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The molecular-level characterization of extracellular polymeric substances (EPS) in the Anammox sludge is also reported for the first time in this paper. The relative contribution of N-containing compounds to the total dissolved organic matter (DOM) determined by summating the normalized intensities exceeded 30%, highlighting the complexity of the nitrogenous compounds in the influent. Additionally, Anammox appeared to be better suited to removing DON compounds with fewer carbonyl or carboxyl groups, more aromatic structures, and higher oxidative properties. Lignin-like substances were verified as the predominant component of N-containing compounds in Anammox EPS, followed by protein and substances with condensed aromatic structures. DON compounds with higher degrees of saturation, lower molecular weight, and higher lignin-like properties were more prone to absorption by Anammox EPS. A series of microbe-mediated pathways were demonstrated to be responsible for DON biodegradation, which revealed the organic and inorganic nitrogen removal mechanisms in the Anammox reactor. The obtained results provide great support to the ongoing efforts to optimize the Anammox process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.