Abstract

Whether the heart's organ-founding, progenitor cell gene regulatory networks (CPC-GRNs) are sustained after birth and can be therapeutically evoked for regeneration in response to disease, remains elusive. Here, we report a spatiotemporally resolved analysis of CPC-GRN deployment dynamics, through the pan-CPC-GRN gene Isl1. We show that the Isl1-CPC-GRNs that are deployed during early cardiogenesis and generate the cardiomyocyte majority from mesoderm, undergo programmed silencing through proteasome- and PRC2-mediated Isl1 repression, selectively in the arterial pole. In contrast, we identify a neural crest (CNC)-specific Wnt/β-catenin/Isl1-CPC-GRN that is deployed through the venous pole during cardiac growth and partitioning, and contributes a minority of cardiomyocytes which, in turn, expand massively to build ~10% of the biventricular myocardium. These dorsal CNCs continue to sporadically generate cardiomyocytes throughout postnatal growth which, however, are non-proliferative, suggesting that partitioning-like, fetal proliferation signals could be therapeutically targeted to evoke clonal expansion capacity in postnatal CNC-cardiomyocytes for heart regeneration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.