Abstract
The link between livestock production, manure management, and human health has received much public attention in recent years. Composting is often promoted as a means of sanitizing manure to ensure that pathogenic bacteria are not spread to a wider environment during land application. In a two-year study (1998 and 1999) in southern Alberta, we examined the fate of coliform bacteria during windrow composting of cattle (Bos taurus) manure from feedlot pens bedded with cereal straw or wood chips. Numbers of total coliforms (TC) and Escherichia coli declined as the composting period progressed. In 1998, TC levels (mean of both bedding types) were log10 7.86 cells g(-1) dry wt. for raw manure on Day 0, log10 3.38 cells g(-1) by Day 7, and log10 1.69 cells g(-1) by Day 14. More than 99.9% of TC and E. coli was eliminated in the first 7 d when average windrow temperatures ranged from 33.5 to 41.5 degrees C. The type of bedding did not influence the numbers of TC or E. coli. Dessication probably played a minor role in coliform elimination, since water loss was low (< 0.07 kg kg(-1)) in the first 7 d of composting. However, total aerobic heterotroph populations remained high (> 7.0 log10 CFU g(-1) dry wt., where CFU is colony forming units) throughout the composting period, possibly causing an antagonistic effect. Land application of compost, with its nondetectable levels of E. coli compared with raw manure, should minimize environmental risk in areas of intensive livestock production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.