Abstract

In this study, 14C-tracers were used to investigate the fate of BPA in flooded soil with or without rice plants during a complete growing period. In flooded soil, the dissipation of BPA (half-life 14.8 d) was accompanied by its mineralization (8.4% of the initially applied radioactivity) and the formation of non-extractable residues (NERs) in amounts (79.5%) similar to that formed under oxic conditions. The growth of rice significantly accelerated the dissipation of BPA in flooded soil, resulting in a reduction in both the half-life (5.6 d) and the amount of NERs (35.8%). Two non-polar metabolites were detected both in unplanted and in rice-planted soil. At rice harvest, 57.1% of the radioactivity had accumulated in rice plants, mainly as NERs (54.2%) rather than as extractable radioactivity (2.7%), and mainly in roots (34.5 ± 1.4%), stems (9.4 ± 1.1%), and leaves (8.8 ± 0.6%), with trace amounts in seeds (3.6 ± 0.3%) and seed shells (0.7 ± 0.05%). Our study thus demonstrates that the oxic-anoxic interface stimulates the dissipation of BPA in flooded soil. The link between the releasing of NERs in flooded soil and the uptake of BPA metabolites by rice should be considered in environmental risk assessments of agroecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call